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Abstract

The muon transverse ionization cooling is modeled as a Brownian motion of
the muon beam as it traverses a Li or Be rod. A Langevin like equation is
written for the free particle case (no external transverse magnetic field) and
for the most realistic harmonically bound beam in the presence of a focusing

magnetic field.
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L INTRODUCTION

The possibility of a ut — 4~ collider to explore the Higgs energy range and supersymime-
try has begun to be vigorously examined. One of the crucial issues to achieve the required
luminosity (£ ~ 10* em~2s—1) is the need to compress the phase space by means of muon
cooling. A technigue that has shown to be very promising is ionization cooling. The intro-
duction of the concept and the physics was first discussed by Skrinsky (1); for a clear and
comprehensive treatment we refer the reader to Neuffer's article [2).

Neuffer has suggested the following differential equation, or difference equation for long

sections,
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where ¢} is the muons normalized transverse emittance, E, is the muon total energy, 2,

is the beta function and < #? > is the square of the rms divergence of the beam due to
multiple scattering,

The original derivation in ref. 2] assumed a cooling system consisting of small alternating
absorber and reaccelerator sections; subsequently, Palmer (3] and Fernow [4] have argued
that Eq.1 is valid for a single absorber. Their argument is quite straightforward; from the
definition of emittance ¢ = 78v/< 12 >< 62 > compute the derivative with respect to 2z
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Recalling ﬂgl = 13—1—05‘*‘:"; y Y81 = 48 < r* > and —JL = 98 < 62 > we obtain a slightly

modified version of Eq. 1,
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The first term reflects the energy loss (cooling) and the last two terms are produced by
multiple scattering (heating).
Assuming a long cooling rod (Li or Be) the gaussian approximation is quite adequate,

then
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where the projected angle 8, = Oz = E’"—ﬂ%ﬂ, /=3 in this expression we have neglected

logarithmic correction terms [5). We could also use the more accurate formula [6]
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with the characteristic angle y, = ¥ O'ISELMEHHI z[i“); the phenomenological parameters

F =098 and v = ﬁ?fp_) are chosen to fit the experimental data (€, represent the mean
number of scatters in the medium) and Lz is the radiation length.

It has been argued [3]that smaller B: produces smaller transverse heating; however, as
we see from Fq.3, the third term increases with small B1. Therefore, if Eq.3 describes the

physical situation, the minimum heating is obtained when
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In other words the beta function of the incident beam on the cooling rod must match the
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length of the rod; furthermore the minimum achievable emittance is, )], = Py

Neuffer (2] has derived a similar expression with L,.; replaced by 4, ,

_ (13.6[MeV])? 8, (0)
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Subsequently, Palmer 3] has conjectured that the third term in Eq.3 need not be included
because the multiple scattering medium (Li or Be rod) is immersed in a uniform transverse
magnetic field, preventing the beam from spreading laterally. This raises the question, how
is the particle distribution changed in position and angle due to the external magnetic field?
We will examine this question in the next sections.

We should also point out that the treatment considered here is also of interest for a
number of other problems in accelerator physics. These include scattering of particles by
residual gas in a synchrotron [7], scattering in the Inverse Cerenkov accelerators (8], plasma
beat-wave accelerators {9] and plasma lenses for future linear colliders [10] and the dynamics

of space-charge dominated beams [11).



II. PARTICLE DISTRIBUTION WITHOUT EXTERNAL MAGNETIC FIELD

This problem has been analyzed in detail by Rossi [12] following the Fokker-Planck
equation approach. Let W(y, ¥4, z; Yo, 6,) dy df represent the number of particles in the phase
space element (y,y + dy;0,6 + d@) after traversing a medium of thickness z and initjal

coordinates y(0) = yo, #(0) = 6,. It satisfies the equation
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with boundary conditjons W(¥,8, 2, ¥0,6,) | =0 = J(y — ¥,)8(f — 6,) and solution
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which can be verified by direct substitution; @, = 4, and Y, = Yo + 8,z. This result allows

W(y,8,z : y,, 6,) =

us to compute the emittance of the beam after traversing the cooling rod. After tedious
gaussian integration we obtain
<y>=Y,
<0>=4,
<y’ >= Y482
<@ >= @24 62z
<yb>=9,Y, + %2 (10)
Averaging over the initial coordinates assuming gaussian distributions, we obtain
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and the total emittance in the absence of a focusing field is

e1(z) = \/

The terms proportional to 6. are the contributions due to multiple scattering.
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III. PARTICLE DISTRIBUTION WITH EXTERNAL MAGNETIC FIELD

In general a particle in a transverse magnetic field satisfies the equation of motion d—zli +

K(z}y = 0 where K(z) =

mnﬂa = w?, B is the azimuthal magnetic field and q is the radius
of the channel (radius of the rod); K(z) is a function of z because of the energy loss. For
simplicity of the arguments that follow, we neglect the energy change as the beam traverses
the rod.

This is not the complete picture because the particle suffers random accelerations due

to scattering (i.e. stochastic changes in angle {‘-‘f = ). A correct equation of motion is

dy
PP

L+ Ky = A(s) (13)
where we denote with A(z) the random acceleration due to Coulomb scattering which excites
betatron oscillations in the beam. This equation is formally a Langevin equation of a particle
in an external field K(z)y (harmonic oscillator) where the frequency is a function of the time
variable z. The main assumptions regarding the stochastic variable A(z), more precisely
Jitdz g A(2'), is that it is independent of y, that it varies extremely rapidly compared to
the variations of the coordinates v and 8, and that it is Gaussian-distributed with a variance
62.

Therefore, we cast the muon cooling problem as an stochastic one; we have to find the
particle distribution W(y, 8, Z; Yo0,), and as before, from that function we can calculate the
emittance.

The method to determine the distribution function uses standard techniques for solv-
ing ordinary differential equations {13]. We propose as a solution ¥(z) = ar(z)exp(rz) +

a2(z)exp(—Az). After some manipulations we obtain the following relations,

¥(2) - yo coswz — 6, 2097 _ g dz'A(2")¥(2")
wz
6(z) — 8, coswz + ywsinwz = i dz' A(2')®(2') (14)

with ®(z,2') = Sasle=s) 49 ®(z,2') = cosw(z — 2'),



A fundamental Lemma in the theory of stochastic differential equations [13], [14] states
that for y(z) ~ Y (z) = f* dz'¥(z')A(2") and § — ©,(z) = Jo d2'®(2’)A(z'), the most general

solution is a particle distribution of the form
. - 1
W(y!a$ Z W, yoswﬂ) - m
XP [~ o7y (Gly — Yo) — 2H(y — Y, )(6 — ©,) + F(8 — ©,)%)] (15)
where the parameters F,G H are function of the external focusing field;
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It can be shown that Eq.15 reproduces Eq.9 in the limit w — 0.The probability density
W(y, 8, z,w; y,, 8,) satisfies a parabolic partial differential equation, the Fokker-Planck equa-

tion
aw oW W
W _ oo 17
oz = 0= Ga)p -t 20" 567 (17)

As in the previous section we are interested in calculating the second moments of the dis-

tribution and from those the emittance; the algebra is involved but trivial and we get,

<y>= Yo COSW2 + B,z %002
<@ >= B, coswz — ywsinwsz
<y’ >= (o coswz + 6,2%8002)2 | 5 B2 () _ sinzus)
<O>= (Gacosws - puosinwn)t 4 o8(L 4 dnie
< yb >= 3,0, cos 2wz — szisin 2wzt 62z coswz’i—:;‘i‘— + 93;_2(% 2 (18)

If we now assume an uncorrelated ensemble of particles with independent gaussian distribu-

tions of initial conditions y, and 8, and average over both variables, we obtain
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An important observation is that for very high magnetic field (w — o0) the rms beam size
remains approximately constant, confirming the conjecture of Palmer [3] mentioned earlier.
If the beam is focused to a waist at the entrance to the rod, the emittance at any distance

2 inside the rod is [15]
2 2 2 g2 o ., 6
€ (z) = € (0) + Oybez + 2% 4 2 [1 — cos (2wz)) (20)

This also leads to Eq.7 for the minimum emittance, provided that o, > %Lmd and

al, > 4f » which will usually be the case for strong focusing (w > 0).

IV. CONCLUSIONS

Using an analogy with a random dynamical process modelled with a Langevin equation,
we have incorporated the stochastic nature of both, position and angle variables into the
problem of a muon traversing a Li or Be rod immersed in & uniform azimuthal magnetic
field. The pseudo-Brownjan motion of the particles in the medium represents heating of
the beam. Emittance increase due to Coulomb multiple scattering (the less likely single
and plural scattering events are neglected) compensates the cooling, emittance decrease,

. dE,
Introduced by the energy loss =
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